Mfc1 is a novel forespore membrane copper transporter in meiotic and sporulating cells.

نویسندگان

  • Jude Beaudoin
  • Raphaël Ioannoni
  • Luis López-Maury
  • Jürg Bähler
  • Samia Ait-Mohand
  • Brigitte Guérin
  • Sheel C Dodani
  • Christopher J Chang
  • Simon Labbé
چکیده

To gain insight in the molecular basis of copper homeostasis during meiosis, we have used DNA microarrays to analyze meiotic gene expression in the model yeast Schizosaccharomyces pombe. Profiling data identified a novel meiosis-specific gene, termed mfc1(+), that encodes a putative major facilitator superfamily-type transporter. Although Mfc1 does not exhibit any significant sequence homology with the copper permease Ctr4, it contains four putative copper-binding motifs that are typically found in members of the copper transporter family of copper transporters. Similarly to the ctr4(+) gene, the transcription of mfc1(+) was induced by low concentrations of copper. However, its temporal expression profile during meiosis was distinct to ctr4(+). Whereas Ctr4 was observed at the plasma membrane shortly after induction of meiosis, Mfc1 appeared later in precursor vesicles and, subsequently, at the forespore membrane of ascospores. Using the fluorescent copper-binding tracker Coppersensor-1 (CS1), labile cellular copper was primarily detected in the forespores in an mfc1(+)/mfc1(+) strain, whereas an mfc1Δ/mfc1Δ mutant exhibited an intracellular dispersed punctate distribution of labile copper ions. In addition, the copper amine oxidase Cao1, which localized primarily in the forespores of asci, was fully active in mfc1(+)/mfc1(+) cells, but its activity was drastically reduced in an mfc1Δ/mfc1Δ strain. Furthermore, our data showed that meiotic cells that express the mfc1(+) gene have a distinct developmental advantage over mfc1Δ/mfc1Δ mutant cells when copper is limiting. Taken together, the data reveal that Mfc1 serves to transport copper for accurate and timely meiotic differentiation under copper-limiting conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mfc1 is a novel copper transporter during meiosis

Meiosis is a specialized cell division process by which diploid germ line cells generate haploid gametes, which are required for sexual reproduction. During this process, several micronutrients are required, including copper ions. Despite important roles for copper-dependent proteins during meiosis, their mechanisms of action remain poorly understood. In a recently publication, we reported the ...

متن کامل

Copper transport and regulation in Schizosaccharomyces pombe.

The fission yeast Schizosaccharomyces pombe has been successfully used as a model to gain fundamental knowledge in understanding how eukaryotic cells acquire copper during vegetative growth. These studies have revealed the existence of a heteromeric Ctr4-Ctr5 plasma membrane complex that mediates uptake of copper within the cells. Furthermore, additional studies have led to the identification o...

متن کامل

Cuf2 Is a Novel Meiosis-Specific Regulatory Factor of Meiosis Maturation

BACKGROUND Meiosis is the specialized form of the cell cycle by which diploid cells produce the haploid gametes required for sexual reproduction. Initiation and progression through meiosis requires that the expression of the meiotic genes is precisely controlled so as to provide the correct gene products at the correct times. During meiosis, four temporal gene clusters are either induced or rep...

متن کامل

The cation-transporting P-type ATPase Cta4 is required for assembly of the forespore membrane in fission yeast.

A novel sporulation-deficient mutant, sev4-L5, was isolated in a genetic screen of a collection of temperature-sensitive mutants of Schizosaccharomyces pombe. The wild-type sev4 gene was identified as cta4+, which encodes a putative cation-transporting P-type ATPase. The sev4-L5 allele harbored a single missense mutation that caused replacement of Gly615 with a glutamate at the putative ATP-bin...

متن کامل

Expression of a germination-specific amidase, SleB, of Bacilli in the forespore compartment of sporulating cells and its localization on the exterior side of the cortex in dormant spores.

A germination-specific amidase of bacilli is a major spore-lytic enzyme that is synthesized with a putative signal sequence and hydrolyses spore cortex in situ. The sleB gene encoding this amidase in Bacillus subtilis and Bacillus cereus was expressed in the forespore compartment of sporulating cells under the control of sigmaG, as shown by Northern blot and primer extension analyses. The fores...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 39  شماره 

صفحات  -

تاریخ انتشار 2011